ICL Participation at NTCIR-9 RITE

نویسندگان

  • Xing Xu
  • Houfeng Wang
چکیده

This paper describes ICL’s participation at NTCIR-9 RITE. We chose BC & MC subtask. Textual entailment is a problem to predict whether an entailment holds for a given test-hypothesis pair. We built an inference model to solve this problem by means of using dependency syntax analysis (by LTP), lexical knowledge base (e.g. CCD), web information (e.g. Baidupedia) and probability method. We used AUC indicator to evaluate the ranking ability of our system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IASL RITE System at NTCIR-10

At our second participation in NTCIR RITE, we developed a twostage knowledge-based textual inference recognition system for both BC and MC subtasks in Chinese. Two main recognition systems, which are based on named entities, Chinese tokens, word dependency, and sentence length, were implemented to identify the entailment and contradiction between sentences. The evaluation result showed that our...

متن کامل

IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-9 RITE

In this paper, we describe the IMTKU (Information Management at TamKang University) textual entailment system for recognizing inference in text at NTCIR-9 RITE (Recognizing Inference in Text). We proposed a textual entailment system using a hybrid approach that integrate knowledge based and machine learning techniques for recognizing inference in text at NTCIR-9 RITE task. We submitted 3 offici...

متن کامل

JAIST Participation at NTCIR-10 RITE-2

Textual entailment recognition is a fundamental problem in natural language understanding. The task is to determine whether the meaning of one text can be inferred from the meaning of the other one. At NTCIR-10 RITE-2 this year – our second participation in this challenge, we use the modified version of our RTE system used at NTCIR-9 RITE for four subtasks for Japanese: BC, MC, ExamBC, and Unit...

متن کامل

ZSWSL Text Entailment Recognizing System at NTCIR-9 RITE Task

This paper describes our system on simplified Chinese textual entailment recognizing RITE task at NTCIR-9. Both lexical and semantic features are extracted using NLP methods. Three classification models are used and compared for the classification task, Rule-based algorithms, SVM and C4.5. C4.5 gives the best result on testing data set. Evaluation at NTCIR-9 RITE shows 72% accuracy on BC subtas...

متن کامل

UIOWA at NTCIR-9 RITE: Using the Power of the Crowd to Establish Inference Rules

We participated in the Binary Classification (BC), Multiple Classification (MC), and Question and Answer (RITE4QA) subtasks for both Simplified Chinese and Traditional Chinese in NTCIR-9 RITE. In this paper, we describe our procedure to establish inference rules using crowdsourcing, refine and weigh them, and apply these rules to a test collection.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011